
Chapter 3
Digital Holography

3.1 General Principles

The concept of digital holographic recording is illustrated in Fig. 3.1a [196, 198]. A
plane reference wave and the wave reflected from the object interfere at the surface
of an electronic sensor array (e.g. Charged Coupled Device, CCD, or Comple-
mentary Metal Oxide Semiconductor, CMOS). The resulting hologram is elec-
tronically recorded and stored in a computer. The object is, in general, a three
dimensional body with diffusely reflecting surfaces, located at a distance d from the
sensor (measured to some representative plane). This is just the classical off-axis
geometry of photographic holography save that the recording medium is an elec-
tronic sensor array rather than photographic film.

In classical optical reconstruction using a replica of the original reference wave
to illuminate the hologram, a “virtual” (primary) image is recreated at a distance
d behind the sensor plane as viewed by an observer; a “real” (secondary) image is
also formed at a distance d, from the sensor but in front of it, between it and the
observer, see Fig. 3.1b. In DH, though, a physical image in virtual or real space is
not created; numerical reconstruction by computer at a given plane produces a
primary or secondary image on a monitor.

Using the coordinate system of Fig. 3.2, a light wave diffracted at an aperture (in
this case a hologram) perpendicular to an incoming beam is described by the
Fresnel-Kirchhoff integral, see Eq. (2.48), as

C n0; g0ð Þ ¼ i
k

Z1
�1

Z1
�1

h x; yð ÞER x; yð Þ exp �i 2pk q
0� �

q0
dxdy ð3:1Þ
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where

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� n0ð Þ2þ y� g0ð Þ2þd2

q
ð3:2Þ

h(x,y) is the hologram function and ρ′ is the distance between a point in the
hologram plane and a point in the reconstruction plane. The inclination factor is set
to 1, since the angles θ′ and θ″ (see Sect. 2.4) are approximately zero. This is valid
for all the numerical reconstruction algorithms in this book.
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A plane reference wave ER x; yð Þ can be described in terms of its real amplitude,

ER ¼ aR þ i0 ¼ aR ð3:3Þ

The diffraction pattern is calculated at a distance d behind the sensor plane, so
that it reconstructs the complex amplitude of the wave in the plane of the real
image.

Equation (3.1) forms the basis for numerical reconstruction from a hologram.
Because the reconstructed wave field Cðn0; g0Þ is a complex function, both the
intensity as well as its phase can be extracted [195]. This is in contrast to the case of
optical hologram reconstruction, in which only the intensity is obtainable. This
interesting property of Digital Holography is used in Digital Holographic Inter-
ferometry, see Chap. 4.

As discussed in Sect. 2.6 the real image could be distorted. According to
Eq. (2.63) an undistorted real image can be produced by using the conjugate
reference beam for reconstruction. To numerically reconstruct an undistorted real
image it is therefore necessary to insert E�

R instead of ER into Eq. (3.1):

C n; gð Þ ¼ i
k

Z1
�1

Z1
�1

h x; yð ÞE�
R x; yð Þ exp �i 2pk q

� �
q

dxdy ð3:4Þ

with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� nð Þ2þ y� gð Þ2þd2

q
ð3:5Þ

This reconstruction scheme is shown in Fig. 3.1c. The real image is formed at
the position where the object was located during recording. It should be noted that
for the plane reference wave defined in Eq. (3.3) both reconstruction formulas, Eqs.
(3.1) and (3.4), are equivalent since ER ¼ E�

R � aR.
The arrangement of Fig. 3.1 with a plane reference wave perpendicularly illu-

minating the sensor is commonly used in Digital Holography. Other recording
geometries are discussed later.

Reconstruction of the virtual image is also possible by either selecting the
negative branch of the square root or introducing the imaging properties of a lens
into the numerical reconstruction process [196]. This lens corresponds to the eye of
an observer viewing an optically reconstructed hologram. In the simplest case this
lens is located directly behind the hologram, as in Fig. 3.3. The imaging properties
of a lens with focal distance f are represented by a complex factor, L(x,y), as

L x; yð Þ ¼ exp i
p
kf

x2 þ y2
� �� �

ð3:6Þ
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The factor L(x,y) is calculated in Annex B1. For unity magnification, the lens
should have a focal length of f ¼ d=2:

The lens described by Eq. (3.6) introduces phase aberrations, which can be
corrected by multiplying the reconstructed wave field by another factor

P n0; g0ð Þ ¼ exp i
p
kf

n02 þ g02
� �� �

ð3:7Þ

This correction factor is derived in Annex B2. The full equation which describes
reconstruction via a virtual lens with f ¼ d=2 is therefore

C n0; g0ð Þ ¼ i
k
P n0; g0ð Þ

Z1
�1

Z1
�1

h x; yð ÞER x; yð ÞL x; yð Þ exp �i 2pk q
0� �

q0
dxdy ð3:8Þ

3.2 Numerical Reconstruction

3.2.1 Reconstruction by the Fresnel Approximation

For x- and y-values, as well as for ξ- and η-values, which are small compared to the
distance d between the reconstruction plane and the sensor, the expression Eq. (3.5)
can be expanded with a Taylor series:

q ¼ d þ n� xð Þ2
2d

þ g� yð Þ2
2d

� 1
8

n� xð Þ2þ g� yð Þ2
h i2

d3
þ � � � ð3:9Þ

The fourth term in Eq. (3.9) can be neglected, if it is small compared to the
wavelength [116], i.e. if,

1
8

n� xð Þ2þ g� yð Þ2
h i2

d3
�k ð3:10Þ
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Fig. 3.3 Reconstruction of
the virtual image
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Or, rewriting in terms of d, we have

d � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8
½ðn� xÞ2 þ ðg� yÞ2�2

k

s
ð3:11Þ

Then the distance ρ consists of linear and quadratic terms:

q ¼ d þ n� xð Þ2
2d

þ g� yð Þ2
2d

ð3:12Þ

With the additional approximation of replacing the denominator in (3.4) by d the
following expression results for reconstruction of the real image:

C n; gð Þ ¼ i
kd

exp �i
2p
k
d

� �

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

n� xð Þ2þ g� yð Þ2
	 
h i

dxdy

ð3:13Þ

If the multiplication terms in the argument of the exponential under the integral
are carried out we get

C n; gð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �i

p
kd

n2 þ g2
� �h i

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

x2 þ y2
� �h i

exp i
2p
kd

xnþ ygð Þ
� �

dxdy

ð3:14Þ

This equation is known as the Fresnel approximation or Fresnel transformation
due to its mathematical similarity with the Fourier Transform (see below). It enables
reconstruction of the wavefield in a plane behind the hologram, in this case in the
plane of the real image.

The intensity is given by its square,

I n; gð Þ ¼ C n; gð Þj j2 ð3:15Þ

and its phase by

u n; gð Þ ¼ arctan
Im C n; gð Þ½ �
Re C n; gð Þ½ � ð3:16Þ
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where “Re” denotes the real part and “Im” the imaginary part of the wave.
Reconstruction of the virtual image in the Fresnel approximation can be

expressed as,

C n0; g0ð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �i

p
kd

n02 þ g02
� �h i

P n0; g0ð Þ

	
Z1
�1

Z1
�1

ER x; yð ÞL x; yð Þh x; yð Þ exp �i
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

¼ i
kd

exp �i
2p
k
d

� �
exp þi

p
kd

n02 þ g02
� �h i

	
Z1
�1

Z1
�1

ER x; yð Þh x; yð Þ exp þi
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

ð3:17Þ

Alternatively we can insert a negative distance into Eq. (3.14), which has the
added advantage that the virtual image is not rotated by 180° because of the action
of performing the Fourier transform.

To digitise the Fresnel transform in Eq. (3.14), the following definitions and
substitutions are introduced [261],

u ¼ n
kd

; v ¼ g
kd

ð3:18Þ

Thus (3.14) is now expressed as,

C u; vð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd u2 þ v2

� �� �

	
Z1
�1

Z1
�1

E�
R x; yð Þh x; yð Þ exp �i

p
kd

x2 þ y2
� �h i

exp i2p xuþ yvð Þ½ �dxdy

ð3:19Þ

A comparison of Eq. (3.19) with the definition of the two-dimensional Fourier
transform (see Annex A) shows that the Fresnel approximation is the just the inverse
Fourier transformation of the function E�

R x; yð Þh x; yð Þ exp �ip=kd x2 þ y2ð Þ½ �,

C u; vð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd u2 þ v2

� �� �
	 =�1 E�

R x; yð Þh x; yð Þ exp �i
p
kd

x2 þ y2
� �h in o ð3:20Þ

The function Γ can be digitised if the hologram function h(x,y) is sampled on a
rectangular raster of N × N points, with steps Δx and Δy along the coordinates. The
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distances between neighbouring pixels on the sensor array in the horizontal and
vertical directions are given by Δx and Δy respectively. With these discrete values
included, the integrals in (3.19) are written in terms of finite sums, i.e.

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd m2Du2 þ n2Dv2

� �� �

	
XN�1

k¼0

XN�1

l¼0

E�
R k; lð Þh k; lð Þ exp �i

p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p kDxmDuþ lDynDvð Þ½ �

for m ¼ 0; 1; :::;N � 1; and n ¼ 0; 1; . . .;N � 1

ð3:21Þ

According to Fourier transform procedures, and Δu, Δv can be written in terms
of Δx, Δy (see Annex A) as,

Du ¼ 1
NDx

; Dv ¼ 1
NDy

ð3:22Þ

After re-substitution, we have,

Dn ¼ kd
NDx

; Dg ¼ kd
NDy

ð3:23Þ

Applying these relationships, Eq. (3.21) converts to

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp �ipkd

m2

N2Dx2
þ n2

N2Dy2

� �� �

	
XN�1

k¼0

XN�1

l¼0

E�
R k; lð Þh k; lð Þ exp �i

p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p
km
N

þ ln
N

� �� �

ð3:24Þ

This is the discrete Fresnel transform. The matrix Γ is evaluated by multiplying
E�
R k; lð Þwith h(k,l) and exp �ip=ðkdÞ k2Dx2 þ l2Dy2ð Þ½ �, followed by application of an

inverse discrete Fourier transform to the product. This calculation is accomplished
most efficiently using the Fast Fourier Transform (FFT) algorithm. The factors before
the sum term in Eq. (3.24) only affect the overall phase and can be neglected if it is
only the intensity in Eq. (3.15) that is of interest. This is also the case if phase
differences between holograms recorded with the same wavelength have to be cal-
culated, according to,(Du ¼ u1 þ const:� u2 þ const:ð Þ ¼ u1 � u2).
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The corresponding discrete formula for reconstruction with a virtual lens of
f ¼ d=2 (Eq. 3.17) is,

C m; nð Þ ¼ i
kd

exp �i
2p
k
d

� �
exp þipkd

m2

N2Dx2
þ n2

N2Dy2

� �� �

	
XN�1

k¼0

XN�1

l¼0

ER k; lð Þh k; lð Þ exp þi
p
kd

k2Dx2 þ l2Dy2
� �h i

exp i2p
km
N

þ ln
N

� �� �

ð3:25Þ

A typical digital hologram of a dice recorded with the geometry of Fig. 3.1 is
shown in Fig. 3.4. The dice is placed a distance d = 1.054 m from a sensor array
with 1,024 × 1,024 pixels of pitch Dx ¼ Dy ¼ 6:8 lm. The recording wavelength is
632.8 nm. Numerical reconstruction of the real image is performed according to
Eqs. (3.14) and (3.24) and illustrated in Fig. 3.5. The bright square in the centre of
the image is the non-diffracted (zero order) reconstruction wave and corresponds to
the first term on the right side of Eq. (2.63). Because of the off-axis geometry, the
image is spatially separated from the zero order term. The other (virtual) image is
out-of-focus in this reconstruction.

An interesting property of (off-axis) holography is that every part of a hologram
contains all the information about the entire object. This is illustrated by the
holograms of Figs. 3.6 and 3.8, where black masks cover nearly half of the holo-
gram areas. Nevertheless, the entire cube is visible without obstruction in the
reconstructions (Figs. 3.7 and 3.9). The masks are visible as shadows in the zero
order terms. The reduction of the effective pixel number leads to a consequent

Fig. 3.4 Digital hologram of
a die
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reduction of the resolution in the reconstructed images. This is equivalent to the
increase of the speckle size observed in optical hologram reconstruction when the
aperture is reduced.

Regarding Eq. (3.23), the pixel distances in the reconstructed image Δξ and Δη
are dependent on the chosen numerical reconstruction distance d. This is because

Fig. 3.5 Numerical
reconstruction

Fig. 3.6 Masked digital
hologram
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Eq. (3.23) corresponds to the diffraction limited resolution of an optical system. The
hologram corresponds to the aperture of the optical system with a side of length
NDx; a diffraction pattern develops at a distance d behind the hologram. The term
Dn ¼ kd=NDx therefore describes the half-diameter of the Airy disk or the speckle
diameter in the plane of the reconstructed image, accordingly, limits the resolution.

Fig. 3.7 Reconstruction

Fig. 3.8 Masked digital
hologram
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This can be regarded as a “natural scaling” algorithm, setting the resolution of the
image reconstructed by a discrete Fresnel transform always to the physical limit.

A simple Matlab© Fresnel transformation reconstruction routine is shown in
Appendix C.

3.2.2 Reconstruction by the Convolution Approach

Numerical processing of the Fresnel-Kirchhoff integral Eqs. (3.1) and (3.4) without
the application of any approximations is time consuming. For faster and more
efficient numerical processing, a different but equivalent formulation is often more
suitable. This formulation makes use of the convolution theorem and, within the
scope of this book, is accordingly denoted as the “convolution approach”. Some
other publications use the term Angular Spectrum Method (ASM), see e.g. [243].
Demetrakopoulos and Mittra applied this method for numerical reconstruction of
suboptical holograms [41]. Later this approach was applied to optical holography
by Kreis [124].

The reconstruction formula Eq. (3.4) can be interpreted as a superposition
integral,

C n; gð Þ ¼
Z1
�1

Z1
�1

h x; yð ÞE�
R x; yð Þg n; g; x; yð Þdxdy ð3:26Þ

Fig. 3.9 Reconstruction
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where the impulse response g(x,y,ξ,η) is given by

g n; g; x; yð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� nð Þ2þ y� gð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x� nð Þ2þ y� gð Þ2

q ð3:27Þ

According to Eq. (3.26) the linear system characterized by g n; g; x; yð Þ ¼
g n� x; g� yð Þ is shift-invariant. The superposition integral can be regarded
therefore as a convolution and the convolution theorem (Annex A) can be applied.
According to this approach the Fourier transform of the convolution of h � E�

R with
g is the product of the individual transforms = hE�

R


 �
and = gf g. So C n; gð Þ can be

calculated by, firstly Fourier transforming h � E�
R, followed by multiplication with

the Fourier transform of g, and, finally, taking an inverse Fourier transform of the
product. Three Fourier transforms are therefore necessary to complete the whole
process. The individual Fourier transforms are efficiently carried out using the FFT
algorithm.

For numerical processing the discrete impulse response function has to be cal-
culated, by replacing the continuous differences (x − ξ) and (y − η) with the discrete
variables kDx and lDy, thus

g k; lð Þ ¼ i
k

exp �i 2pk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k2Dx2 þ l2Dy2

ph i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k2Dx2 þ l2Dy2

p ð3:28Þ

with integer values k ¼ 0; 1; . . .;N � 1; l ¼ 0; 1; . . .;N � 1
The process of reconstruction into the real image plane can be written as,

C n; gð Þ ¼ =�1 = h � E�
R

� � � = gð Þ
 � ð3:29Þ

A simple Matlab© reconstruction routine perform Eq. (3.29) is shown in
Appendix C.

The Fourier transform of g(ξ,η,x,y) can be calculated and expressed analytically
[130] as,

G fx; fy
� � ¼ exp �i

2pd
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2f 2x � k2f 2y

q� �
ð3:30Þ

The spatial frequencies fx and fy can now be replaced by discrete values,

fx ¼ n
NDx

fy ¼ m
NDy

ð3:31Þ

with integer values n ¼ 0; 1; . . .;N � 1; m ¼ 0; 1; . . .;N � 1. The discrete transfer
function G now becomes
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G n;mð Þ ¼ exp �i
2pd
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kn

NDx

� �2

� km
NDy

� �2
s8<

:
9=
; ð3:32Þ

which consequently saves one Fourier transform operation in reconstruction. Thus
we now have,

C n; gð Þ ¼ =�1 = h � E�
R

� � � G
 � ð3:33Þ

To reconstruct the virtual image either a negative distance, or a lens with
transmission factor L x; yð Þ and a correction factor P n0; g0ð Þ according to Eqs. (3.6)
and (3.7) have to be taken into account. Thus, we have

C n0; g0ð Þ ¼ P n0; g0ð Þ=�1 = h � ER � Lð Þ � Gf g ð3:34Þ

The pixel spacing corresponding to the images reconstructed by the convolution
approach are equal to that of the hologram pitch, i.e.

Dn ¼ Dx; Dg ¼ Dy ð3:35Þ

The pixel separations in the reconstructed images corresponding to the convolution
approach differ from those which occur with the Fresnel approximation (Eq. 3.23).
At first sight it seems to be possible to achieve a higher resolution with the con-
volution approach if the pixel separation is small enough. However, on closer
examination we recognise that the resolution calculated by Eq. (3.35) is only a
numerical value. The physical image resolution is determined by the diffraction
limit, i.e. Eq. (3.23) and this also applies to the resolution limit corresponding to the
convolution approach.

The area reconstructed with the impulse response function defined in Eq. (3.32)
is symmetrical with respect to the optical axis. The area can be shifted by intro-
ducing the integers sk, ll,

g k þ sk; lþ slð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k þ skð Þ2Dx2 þ lþ slð Þ2Dy2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ k þ skð Þ2Dx2 þ lþ slð Þ2Dy2

q ð3:36Þ

The convolution approach allows us to introduce image magnification into the
reconstruction process. This is possible if the reconstruction distance is set to

d0 ¼ d � m ð3:37Þ

where d is the recording distance (also used as the reconstruction distance) and m is
the magnification factor. A magnification of m ¼ 1 corresponds to Dn ¼ Dx, and
Dg ¼ Dy. The lens focal distance is given by the lens formula of geometrical optics:
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f ¼ 1
d
þ 1
d0

� ��1

ð3:38Þ

Now Eq. (3.34) is applied for reconstruction at a distance d′ instead of d and,
thus

L x; yð Þ ¼ exp i
p
kf

x2 þ y2
� �� �

¼ exp i
p
k

1
d
þ 1
d0

� �
x2 þ y2
� �� �

ð3:39Þ

An example of a reconstruction with the convolution approach is shown in
Fig. 3.10. The hologram of Fig. 3.4 is reconstructed with a magnification of
m ¼ 1=7. The corresponding pixel separation in the reconstructed image for Δx of
6.8 μm is given as Dn ¼ Dx=m ¼ 48 lm. This should be compared with Dn ¼
96 lm obtained using the Fresnel reconstruction (and shown in Fig. 3.5). Thus
twice as many pixels are available for the object field using the convolution
approach. However, it is emphasized again that the physical resolution is the same
in both Figs. 3.5 and 3.10.

3.2.3 Digital Fourier Holography

The special holographic recording geometry of Fig. 3.11 is known as lensless
Fourier holography. It also has been realized using digital holographic concepts

Fig. 3.10 Reconstruction
with the convolution
approach
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[245]. Here, a point source spherical reference wave is located in the plane of the
object. The reference wave at the sensor plane is therefore described by,

ER ¼
exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2ð Þp	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2ð Þp


 1
d
exp �i

2p
k
d

� �
exp �i

p
kd

x2 þ y2
� �	 
 ð3:40Þ

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ x2 þ y2

p
is the distance between the point source and a point with

coordinates (x,y) in the sensor plane. The approximation in Eq. (3.40) is the same as
used in Sect. 3.2.1 to derive the Fresnel transform. Inserting this expression into the
reconstruction formula for the virtual image (3.17) leads to following equation,

C n; gð Þ ¼ C exp þi
p
kd

n2 þ g2
� �h i

=�1 h x; yð Þf g ð3:41Þ

where C is a complex constant. A lensless Fourier hologram is therefore recon-
structed by a Fourier transform. The spherical phase factor exp �ip=kd x2 þ y2ð Þð Þ
associated with the Fresnel transform is eliminated by the use of a spherical ref-
erence wave with the same curvature as the original. Numerical focusing into other
planes is therefore not possible using Eq. (3.41). Numerical focusing can be real-
ized, if different values of d for recording (reference wave factor ER) and recon-
struction are inserted in Eq. (3.17).

3.3 Shift and Suppression of DC-Term and Conjugate
Image

3.3.1 Suppression of the DC Term

The bright square in the centre of Fig. 3.5 is the non-diffracted reconstruction wave.
This zero order or DC term disturbs the image, because it obscures all the parts of
the object which lie behind it. Methods have been developed to suppress this term e.
g. by Kreis et al. [125].

Reference wave
source point

Object

CCD

Fig. 3.11 Digital lensless Fourier holography
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To understand the origins of this DC term, the process of hologram formation as
described by Eq. (2.60) needs to be considered again. The equation is rewritten by
inserting the definitions of ER and EO, and multiplying, to give,

Iðx; yÞ ¼ E0 x; yð Þ þ ER x; yð Þj j2
¼ a2R þ a2O þ 2aRaO cos uO � uRð Þ

ð3:42Þ

The first two terms lead to the DC term in the reconstruction process. The third
term is a cosinusoidally varying component lying between values of �2aRaO and
illuminating the pixels across the sensor. The average intensity of all pixels of the
hologram matrix is

Im ¼ 1
N2

XN�1

k¼0

XN�1

l¼0

I kDx; lDyð Þ ð3:43Þ

The term a2R þ a2O can now be suppressed by subtracting this average intensity Im
from the hologram:

I 0 kDx; lDyð Þ ¼ I kDx; lDyð Þ � Im kDx; lDyð Þ ð3:44Þ

for k ¼ 0; . . .;N � 1; l ¼ 0; . . .;N � 1.
The reconstruction of I 0 creates an image with strongly suppressed DC term. An

example of this is shown in Fig. 3.12. The upper left figure is a photograph of the
object. Reconstruction without DC term suppression is depicted in the upper right
figure. The object is covered by the DC term. The lower left figure shows recon-
struction with DC suppression included. The original object is clearly visible.

Instead of subtracting the average intensity it is also possible remove the DC
component using a high-pass filter with a low cut-off frequency as shown in the
lower right image of Fig. 3.12.

The subtraction of the average intensity from the hologram before reconstruction
is the basic objective of DC suppression. The same effect can be achieved, if two
holograms with stochastically changed speckle structures are subtracted from each
other [42]. The reconstruction of this subtraction hologram results in an image
without zero order term.

Another method of suppression is to separately capture and measure the inten-
sities of the reference wave a2R and object wave a2O. This can be done for example
by blocking one wave while monitoring the other. Afterwards a DC term free image
can be calculated by subtracting the intensities from the hologram before recon-
struction. However, this requires higher experimental effort due to the additional
measurements needed.
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3.3.2 Tilted Reference Wave

Using the recording geometry of Fig. 3.1 the real and virtual image are located at
different observation planes. During numerical reconstruction we can choose to
focus either on the real or on the virtual image. The other image is usually out-of-
focus due to the long distance between the object and sensor. Consequently only
one image is clearly visible in the reconstruction, see Fig. 3.5.

However, there are some instances where it is beneficial to laterally shift one
image with respect to the other. In this case it can be useful to record the holograms
with a tilted reference wave, as in Fig. 3.13. In this geometry the real image is
deflected from the optic axis at an angle approximately twice that of the original
reference wave.

Fig. 3.12 Suppression of the DC term (courtesy of S. Seebacher)
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The tilted reference wave is described by,

ER ¼ exp �i
2p
k
x sin h

� �
ð3:45Þ

The disadvantage of this set-up are the much higher spatial frequencies produced
at the sensor in comparison to the geometry of Fig. 3.1.

3.3.3 Phase Shifting Digital Holography

The amplitude and phase of a light wave can be reconstructed from a single
hologram by the methods described in the preceding chapters. A completely dif-
ferent approach, called Phase Shifting Digital Holography, has been proposed by
Skarman [216, 251]. He used a phase shifting algorithm to calculate the initial
phase and thus the complex amplitude in any plane, e.g. the image plane. With the
initial complex amplitude distribution in one plane the wave field in any other plane
can be determined using the Fresnel-Kirchhoff formulation. Later Phase Shifting
DH was improved and applied to opaque objects by Yamaguchi et al. [92, 255–258,
264, 265].

The basic arrangement for phase shifting DH is shown in Fig. 3.14. The object
wave and the reference wave interfere at the surface of a sensor. The reference wave
is guided via a mirror mounted on a piezoelectric transducer (PZT). With this PZT

CCD

(a)

(b)

Reference wave

Object

d

Real image

θ

Virtual image

2θ

x

θ

Fig. 3.13 Digital Holography
with a tilted reference wave.
a Recording.
b Reconstruction
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the phase of the reference wave can be shifted stepwise. Several (at least three)
interferograms with mutual phase shifts are recorded. Afterwards the object phase
uO is calculated from the phase shifted interferograms; the procedure is similar to
that of phase shifting in conventional HI (see Sect. 2.7.5). The real amplitude
aO x; yð Þ of the object wave can be extracted from the intensity by blocking the
reference wave.

As a result the complex amplitude

EO x; yð Þ ¼ aO x; yð Þ exp þiuO x; yð Þð Þ ð3:46Þ

of the object wave is determined in the recording (x,y) plane.
Now the Fresnel-Kirchhoff integral can be used to calculate the complex

amplitude in any other plane. To calculate an image of the object an artificial lens
with, for example, f ¼ d=2 is introduced in the recording plane according to
Eq. (3.6). By means of the Fresnel approximation Eq. (3.17) the complex amplitude
in the image plane is then given by

EO n0; g0ð Þ ¼ C exp þi
p
kd

n02 þ g02
� �h i

	
Z1
�1

Z1
�1

EO x; yð ÞL x; yð Þ exp �i
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

¼ C exp þ ip
kd

n02 þ g02
� �� �

	
Z1
�1

Z1
�1

EO x; yð Þ exp þi
p
kd

x2 þ y2
� �h i

exp i
2p
kd

xn0 þ yg0ð Þ
� �

dxdy

ð3:47Þ
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Fig. 3.14 Phase shifting
Digital Holography, set-up
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where again the coordinate system of Fig. 3.2 applies. Since the complex amplitude
in the hologram plane is known, it is also possible to reconstruct the object by
inversion of the propagation process [206]. Propagation from the object plane to the
hologram plane is described by

EO x; yð Þ ¼ i
k

Z1
�1

Z1
�1

EO n; gð Þ
exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q dndg

¼ =�1 = EO n; gð Þð Þ � = g n; g; x; yð Þð Þf g

ð3:48Þ

with

g n; g; x; yð Þ ¼ i
k

exp �i 2pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ n� xð Þ2þ g� yð Þ2

q ð3:49Þ

EO n; gð Þ describes the complex amplitude of the object wave at the surface, see
Fig. 3.2. Therefore it can be calculated directly by inverting Eq. (3.46), to give,

EO n; gð Þ ¼ =�1 = EO x; yð Þð Þ
= g n; g; x; yð Þð Þ

� �
ð3:50Þ

The advantage of phase shifting Digital Holography is that it produces a
reconstructed image of the object without the presence of either the zero order term
or the conjugate image. The price for this achievement is the higher technical effort
required; phase shifted interferograms have to be generated, thereby restricting the
method to slowly varying phenomena with constant phase during the recording
cycle.

Phase shifting Digital Holography is illustrated by a holographic image of a nut,
shown in Fig. 3.15. This example demonstrates the improvement compared to
conventional Digital Holography, as shown in Fig. 3.12.

3.4 Recording of Digital Holograms

3.4.1 Image Sensors

It was the invention of the Charge-Coupled Device (CCD) at Bell Labs, and the
dramatic increase in computer storage and processing power which led to the
advent of digital holography. More recently, the Complementary Metal Oxide
Semiconductor (CMOS) has also become popular for image sensing applications
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and is gradually replacing the CCD in digital still and video cameras. Electronic
sensors like CCD or CMOS are composed of arrays of individual light sensitive
elements (pixels) which convert incident photons into an induced charge, propor-
tional to the incident intensity that can be stored or transferred through the device.
The arrays are sensitive to the spatial variance of the incident light, and are
therefore widely used in image recording. Both CCD and CMOS arrays are used in
DH. CCDs are generally available as line scanning devices, consisting of a single
line of light detectors, and as area scanning devices, consisting of a rectangular 2D
matrix of detectors; CMOS are commonly available as area devices. For Digital
Holography only the latter architecture is of interest.

To illustrate the concepts of electronic sensors we will base our discussion
around the CCD, but the principles of CMOS are broadly similar. Imaging using a
CCD sensor is performed in a three-step process [26], involving,

1. Light exposure (the incident light on each pixel is converted into charges by the
internal photo effect).

2. Charge transfer (the induced charge packets are moved through the semicon-
ductor (silicon) substrate to memory/storage cells), and,

3. Charge to voltage conversion and output amplification (the capacitor matrix of
the memory cells converts the transferred charge to a voltage; an amplifier
adapts the voltage to the output requirements).

Three basic architectures are common in CCD sensors viz. interline transfer,
frame transfer and full-frame transfer configurations respectively.

Fig. 3.15 Phase shifting
Digital Holography, example
(courtesy of S. Seebacher)
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Interline (IL) transfer devices consist of rows of light-sensitive detector elements
interleaved with rows of non-sensitive or light shielded storage elements, see
Fig. 3.16. The charge packets which are generated in the light sensitive pixels are
shifted into the adjacent storage area by a parallel clock; and are then shifted line-
by-line into a serial register. The serial register transfers the charge packages to an
amplified charge-to-voltage converter to form the output signal. The major disad-
vantage of interline transfer CCDs is their complexity, which results from sepa-
rating the photo-detecting and storage (readout) functions.

Frame-transfer (FT) CCDs also have different areas for light conversion and for
storage but are arranged into two area arrays rather than lines: a light sensitive
capture area and a shielded storage area, see Fig. 3.17. The idea is to rapidly shift a
captured scene from the photosensitive array to the storage array. The readout from
the storage register is performed similarly to the readout process of interline transfer
devices.

Full-Frame (FF) sensors have the simplest architecture, see Fig. 3.18. In contrast
to IL and FT devices there is no separate storage area. The entire sensor area is light
sensitive. The photons are converted into charge packets at each pixel and the
resulting rows of image information are then shifted in parallel to the serial register,
which subsequently shifts the row of information to the output as a serial stream of
data. The process repeats until all rows are transferred off-chip. Since the parallel
register is used for both image detection and readout, a mechanical shutter is needed
to preserve scene integrity. Full-frame sensors have highest resolution and the
production costs are comparably inexpensive.

In principle all three types of sensor are suitable for Digital Holography. Full
frame type sensors have the advantage that the exposure time can be adjusted
according to the demands of a specific application. Even exposure times in the
range of seconds are possible. However, the mechanical shutter limits the number
of holograms, which can be recorded per second (frame rate). In addition the shutter
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of parallel
shift

Output
amplifier
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Storage elements

Fig. 3.16 Interline-transfer
architecture
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may cause mechanical vibrations to the set-up, which deteriorate the hologram
quality. An advantage of interline transfer type sensors is that they are equipped
with an electronic shutter, allowing higher frame rates. The best suited camera type
depends therefore on the specific holographic application.

In contrast to CCDs each light sensitive pixel of a CMOS sensor is equipped
with its own amplifier; i.e. the charge-to-voltage conversion is carried out at pixel
level. Each pixel can be read out individually. State-of-the-art CMOS sensors have
pixel pitches as small as 1.12 μm (see Table 3.1), which makes them an important
alternative for digital holographic applications.
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Fig. 3.17 Frame-transfer architecture
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3.4.2 Spatial Frequency Requirements

The CCD or CMOS sensor records the interference pattern resulting from super-
position of the reference wave with the waves scattered from the different object
points. In order to reduce averaging effects over the area of a pixel, the maximum
spatial frequency of the hologram should be smaller than the resolution limit
imposed by the sensor. The maximum spatial frequency that can be resolved is
determined by the maximum angle θmax between the reference wave and the waves
scattered from the different object points according to Eq. (2.30), and given by,

fmax ¼ 2
k
sin

hmax

2
ð3:51Þ

Photographic emulsions used in classical optical holography have resolutions up to
5,000 line pairs per millimetre (lp/mm). Using these materials, holograms with
beam angles of up to 180° can be recorded. However, typical pixel dimensions of
CCD/CMOS sensors are around Dx 
 5 lm. Consequently, the corresponding
maximum resolvable spatial frequency is given by

fmax ¼ 1
2Dx

ð3:52Þ

and is therefore in the range of 100 lp/mm for 5 μm pixels. Combining Eqs. (3.51)
and (3.52) leads to a maximum angle, given by

hmax ¼ 2 arcsin
k

4Dx

� �

 k

2Dx
ð3:53Þ

Table 3.1 CCD and CMOS cameras suitable for Digital Holography

Camera Chip
type

Number of
pixels

Pixel size
(μm2)

Frames
per
second

Dynamic
range

θmax for
λ = 532 nm

Roper Sci.
MegaPlus
1.4i

CCD 1,317 × 1,035 6.8 × 6.8 6.9 8 bit 2.2°

GT3300 CCD 3,296 × 2,472 5.5 × 5.5 8 /14 bit 2.8°

Duncan
DT1100

CCD 1,392 × 1,040 4.65 × 4.65 12 8 /10 bit 3.3°

DMK
72BUC02

CMOS 1,280 × 960 2.2 × 2.2 15 8 bit 6.9°

Sony
CMX081PQa

CMOS No data 1.12 × 1.12 15 No data 13.6°

a For mobile phones
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where the approximation is valid for small angles. For a recording wavelength of
532 nm and 5 μm pixels, the maximum recordable angle is about 3.0°. The pixel
size therefore limits the maximum angle between the reference and object wave.

3.4.3 Cameras for Digital Hologram Recording

The principle parameters of some selected CCD and CMOS cameras suitable for
Digital Holography are listed in Table 3.1.

The sensitivity of CCD or CMOS cameras is typically in the range of 10−4 to
10−3 J/m2, which is higher than the sensitivity of photographic emulsions used for
classical holography. The spectral response of silicon-based sensors covers the
range from approximately 400–1,000 nm. Many commercial cameras are equipped
with spectral filters to restrict the sensitivity to the visible spectrum.

In conventional holography with photographic plates the intensity ratio between
reference and object wave is normally set to be in the range of 5:1–10:1 in order to
avoid nonlinear effects due to the recording medium. However, the maximum
contrast in an interference pattern is achieved if the intensity ratio between the two
waves is 1:1. Electronic sensors have a much better linearity in the exposure curve
than photographic emulsions and consequently, a unity intensity ratio is normally
aimed for. As in classical holography the total light energy impinging on the sensor
can be controlled by varying the exposure time using a mechanical or the electronic
camera shutter.

Currently, CMOS cameras possess the highest resolution (smallest pixel size),
see Table 3.1. On the other hand CMOS cameras often have a logarithmic exposure
curve. However, this can be tolerated; the advantage of smallest pixel size is more
important. The dynamic ranges of CCD- and CMOS-devices is typically 8 bit (256
grey values) or higher. This is comparable with photographic materials and fully
sufficient for hologram recording. Even objects with brightness variations
exceeding the dynamic range of the recording medium can be stored and recon-
structed, because the object information is coded as interference pattern (hologram).

Efficient numerical reconstruction of digital holograms making use of the fast
Cooley-Tukey FFT algorithm requires a pixel number, which is a power of 2 (e.g.
1,024 × 1,024). The pixel numbers of some of the cameras listed in Table 3.1 differ
from that rule. For a pixel number of e.g. 1,317 × 1,035 (MegaPlus 1.4i) only
1,024 × 1,024 pixels are used for reconstruction. In the case of pixel number
slightly lower than a power of 2 it is advisable to add artificial pixels with grey
value zero (black) to the recorded hologram until a pixel number of 2n 	 2n is
reached. This zero padding does not distort the reconstructed image; it only causes
a smoothing or interpolation.
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3.4.4 Recording Set-ups

In this section typical arrangements used in Digital Holography are discussed with
respect to their spatial frequency limitations. In Fig. 3.19a a plane reference wave
propagates perpendicularly to the sensor. The object is located off-axis with respect
to the optic axis. This arrangement is very simple, but the space occupied by the
object is not used efficiently. The maximum angle between rays emanating from the
edge of a cubic object with sides of length L, to the opposite edge of the sensor with
sides of length NDx is (distance x shown in Fig. 3.19) is given as

hmax 
 x
dmin

¼
ffiffi
5
4

q
Lþ NDxð Þ
dmin

ð3:54Þ

The corresponding minimum object distance dmin is calculated by equating this
expression with the approximation for hmax in Eq. (3.53), and thus,
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Fig. 3.19 Recording set-ups.
Left side view; Right top view
as seen from sensor
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dmin ¼
ffiffiffi
5
4

r
2Dx
k

Lþ NDxð Þ ¼
ffiffiffi
5

p Dx
k

Lþ NDxð Þ ð3:55Þ

In Fig. 3.19b the plane reference wave is coupled into the set-up via a beam
splitter. This allows positioning the object symmetrically, i.e. objects with larger
dimensions can be recorded at a given distance d. The minimum object distance is:

dmin 
 x
hmax

¼
ffiffiffi
2

p Dx
k

Lþ NDxð Þ ð3:56Þ

However, the DC term is in the centre of the reconstructed image and has to be
suppressed by the procedures described in Sect. 3.3.1.

Figure 3.19c shows an arrangement for lensless Fourier holography. The
spherical reference wave is coupled into the set-up via a beam splitter in order to
have the source point in the object plane. The minimum object distance is:

dmin ¼
ffiffiffi
2

p Dx
k
L ð3:57Þ

In the lensless Fourier arrangement the shortest object distance can be chosen.
For all the arrangements shown, the maximum spatial frequency has to be

adapted very carefully to the resolution of the sensor. If too high a spatial frequency
occurs, the contrast of the entire hologram decreases or, in the extreme case, it
vanishes totally. In practice, suitably placed apertures, which restrict the lateral
propagation help to ensure that the spatial frequency requirements are met.

To record objects with dimensions larger than a few centimetres on a typical
sensor, the recording distance d needs to be increased up to several meters. This
may not be feasible in practice and recording arrangements are developed to
maintain object angles within a resolvable spatial frequency spectrum [180, 203].
A typical example is shown in Fig. 3.20. A diverging lens is placed between the
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Fig. 3.20 Recording geometry for large objects
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object and the target generates a de-magnified virtual image of the object at a
distance d′. The wave field emerging from this virtual image is superimposed with
the reference wave and the resulting hologram is recorded. The maximum spatial
frequency is lower than that of a hologram recorded without object reduction.

3.4.5 Stability Requirements

A stable optical set-up is necessary for digital as well as for conventional holog-
raphy. Any change in the optical path difference between the interfering beams will
result in a movement of the fringes and reduced contrast in the hologram. In
practice, the path variation should not exceed 1/4 to 1/10 of a wavelength during
hologram exposure. For holography using a continuous wave laser it is essential to
mount the optical arrangement on a vibration isolated table. For field holography, a
short duration, of the order of a few nanoseconds, pulsed laser is a better option. In
contrast to classical holography disturbances due to vibrations are visible in DH
even in the recording process: the hologram visible on the monitor of the recording
system has a low modulation or the contrast vanishes totally. This is an easy way to
monitor the stability of the set-up against vibrations.

3.4.6 Light Sources

The coherence length Lc of the light source used for off-axis holography has to be
longer than the optical path difference (OPD) between the reference and object
wave paths (measured from the beam splitter to the recording medium) for
recording of holograms. If Lc is too short the interference pattern between reference-
and object wave vanishes. In practice for most applications the use of a laser is
mandatory.

Some commonly used continuous (cw) lasers for Digital Holography and their
typical specifications are summarized in Table 3.2. The most common lasers now

Table 3.2 Selected cw lasers for Digital Holography

Laser Wavelength
(nm)

Output power Coherence length
(m)

He–Ne-laser (multi-mode) 632.8 1–50 mW 0.2

Argon-ion laser (single mode) 488/514.5 Up to several
W

Up to 100

Frequency doubled Nd:YAG-
laser

532 Up to several
W

Several 10’s

Stabilized diode laser Various 5–100 mW Up to 100
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used in DH are the frequency-double diode pumped solid state laser (FD-DPSS)
and single mode diode lasers.

The FD-DPSS is usually, but not exclusively, based on a doped-insulator crystal
such as Nd-YAG; its fundamental wavelength is 1,064 nm producing a frequency-
doubled output of 532 nm (the green part of the visible spectrum) over coherence
lengths of several tens of meters. It is available either in continuous wave mode
(cw), with output powers up to several watts, or in pulsed mode with hundreds of
millijoules output over a few nanoseconds duration and at pulse repetition rates of
up to 50 Hz. Lower energy (tens of microjoules) models are available with repe-
tition rates up to kilohertz. Flashlamp (rather than diode) pumping can produce
energies of several joules. They are rapidly replacing gas and ruby lasers as the
preferred option for classical and digital holography.

For field applications out with controlled laboratory conditions, or if moving
objects have to be recorded, a pulsed laser is necessary. Formerly ruby lasers were
commonly used. Now pulsed Nd:YAG-lasers have better characteristics with
respect to compactness, pulse stability and repetition rate.

Diode lasers are also now commonly for continuous wave applications. Single
mode operation can be achieved by stabilization electronics. Stabilized diode lasers
have long coherence lengths and sufficient output power. However, the wavelength
is not fixed by atomic transitions as for the lasers discussed above. That means it is
necessary to monitor its wavelength during operation. In addition the wavelength
depends on the temperature, typical drift is of the order of 0.2 nm/°C. On the other
hand their wavelengths are tuneable over the order of several nanometers. Tuneable
diode lasers are used for two-wavelength contouring for example.

Another interesting type of light source for DH is the superluminescent diode
(SLED or SLD). Such diodes combine the high output power of laser diodes with
the low temporal coherence of conventional LED’s. These devices are the ideal
choice, if low coherent noise but high brightness is necessary.

In the early days of holography, both classical and digital, gas lasers such as
Helium-Neon (HeNe) and argon ion were almost exclusively used for continuous
wave holography and ruby lasers for pulsed holography. The Helium-Neon
(He–Ne) laser is able to operate at several different wavelengths, but mostly
commonly the red 632.8 nm line is used. He–Ne lasers are moderately inexpensive,
the technology is mature and still found in many laboratories and schools for
educational uses of holography. When DH was in its infancy, and only sensors with
pixel sizes of about 10 µm were available, the relatively long wavelength was
advantageous, because it allowed larger angles between the interfering waves (see
Sect. 3.4.2). Unstabilized He–Ne lasers oscillate on several longitudinal modes. The
coherence length of such lasers is therefore not determined by the width of a single
mode, but by the width of the entire gain profile and is in the order of 20 cm.

The spatial coherence of the laser is also crucial in holography. Only with an
object illumination of sufficient spatial coherence it is possible to generate a scat-
tered light field with defined complex amplitude in the far field domain of the
object. The lasers discussed above usually oscillate in a single transverse mode
(TEM00) and have a Gaussian profile.
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For some special applications in microscopy, particle sizing or in shearing
interferometry the requirements on temporal coherence are lower than for off-axis
holography. In this case light emitting diodes (LED’s) can often be used. LED’s
have a spectral width of about 10 nm or, equivalently, a coherence length in the
range of 50 µm. This is sufficient if the OPD is sufficiently low. In Chap. 7 we
present some computational methods which enable sensing of low coherence wave
fields as well. This enables applications very similar to those applicable for DH,
such as numerical refocusing for example, but using low coherent light provided by
an LED.
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