
UNDERWATER LASER APPLICATIONS
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Several methods are discussed for utilizing the properties of lasers to improve
visibility where scattering limits range. Simple pulsed viewing systems are being
evaluated in underwater applications. Scanning sys tems offer alternative advantages
which would be preferable in some circumstances. Where it is essential to have real­
time presentation of data with a large video bandwidth, lasers could be used for trans­
missions up to 0.75km. Laser navigational aids in the favourable visibility of deep
ocean could give ranges up to 1km. There are also a variety of surveying possibili­
ties. Particle velocity, turbulence, current and similar measurements are being made
in laboratories using Doppler techniques. These techniques will shortly be extended
to measurements in the sea. Holography could permit plankton counting, species
identification, speed, distribution and behavioural studies without sample interference
and whilst the study vessel is in motion.

Fig.1a. Optical window in water

Fig .1b. Typical scattering function
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Underwater viewing is made difficult, not so much
by attenuation, but by scatter which dilutes the con­
trast with which the object can be seen. This is so
whether the target is lit by sunlight from above, or
by a light source underwater. The problem is worse
if the light source is near the viewer because light
scattered from suspended matter in the water is
unattenuated, while that reflected from the target
has been attenuated.

The eye can distinguish changes in light intensity of
about 2%' Thus a black and white target cannot be
distinguished when the scattered light is more than
fifty times the light received from the white parts
of the target. The distance at which the target be­
comes indistinguishable is called the visibility­
length. This varies from about 70m in the ocean
down to zero in tidal estuaries (average values are
5 to 10m). Under good conditions about half the light
is lost by scattering and the other half by absorption.
In more difficult conditions the scattering loss will

THE OPTICAL WINDOW in water is restricted to
the blue-green and green parts of the spectrum;
there are no narrow wavelength regions in which it
is possible to obtain lower attenuation (Fig. 1a).
Both the argon and krypton gas lasers produce app­
reciable c.w.power in the blue or blue-green regions.
The argon laser has produced as much as lOW
though it is inefficient. Pulsed gas lasers are also
available and include argon, krypton and neon. Pulsed
solid-state lasers suitable for underwater applica­
tion involve the use of neodymium doping in various
host materials, the most simple and well-developed
of these being neodymium in glass. In this case,
emission is in the infra-red region and frequency­
doubling techniques are necessary to produce light
in the green part of the spectrum. Peak powers of
several megawatts have been obtained.

UNDERWATER LIGHT SCATTERING
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greatly exceed the amount lost by absorption. Most
of the scattering particles will absorb some of the
incident light so the remaining light is also reduced
by subsequent scattering. It appears, however, that
over long distances more scattered light may illu­
minate the target than direct light.

Details of the scattering process, time delays involved
and scattering functions are all poorly understood
and satisfactory measurements are lacking. In addi­
tion, the available mathematical techniques are inade­
quate for calculating the light back-scattered over
long distances even if the measurements were
available.

The attenuation-length is the distance in which the
light would be attenuated by both scatter and absorp­
tion to 1/e of its original value, that is about 33%'
It follows that for good conditions the visibility is
about four attenuation-lengths.

Measurements as a function of angle show that rela­
tively little light is scattered backwards (Fig. Ib).
To reduce this back-scatter the light should be as
close to the target as possible and a directional
light source should be used from one side of the ob­
ject rather than directly in front. Assuming that all
the scattered light is rejected both on the outward
and return path, the limitation on viewing is when
the signal level deteriorates to the point where only
a few photons are returned from the target for each
picture point. Assuming that over 10000 picture
points are required (not a high resolution) and lJ of
light is transmitted, then the range is about three
visibility-lengths. This is not very dependent on
radiated power or resolution requirements. Various
workers have given similar theoretical results vary­
ing from 10-13 attenuation-lengths.

Recently some workers have suggested that, by
making use of the forward-scattered light in lower­
resolution systems, this range might be improved.
However, if much of the scattered light is accepted
by the receiver, the intrinsic noise due to photon
fluctuations will mask all signals.

nISCRIMINAnON AGAINST SCATTER

Pulsed range gating

If a very-short pulse of light is transmitted there is
a continuous return of this light to the receiver by
scatterers at steadily increasing range. Light re­
turned from the target is delayed by the transit
time from transmitter to target and back to the re­
ceiver. If the receiver is not opened until the light
from the target returns and is closed when the light
from this ceases, most of the scattered light is
avoided (Fig. 2a).

Short light pulses and short receiving times give
better discrimination and higher contrast. A re­
ceiver pulse which is shorter than the light pulse
wastes light returned from the target without signifi­
cantly improving discrimination (Fig. 2b). Conversely,
a receiver pulse longer than the light pulse gives a
small depth over which an object will be seen with
similar brightness but decreases the effective depth
discrimination.

There have been many demonstrations of the tech­
nique, and depth-proof apparatus has been produced,
Fig. 3, but the major difficulty is caused by very large
changes in signal returns as a function of range. At
extreme range signals will be 10- 6 of those just in
front of the camera. If the range gate is 1/6 of the
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Fig. 3. Contrast improvement with
range

b

Flexibility of scanning techniques

Discrimination can be adjusted by altering trans­
mitter-receiver separation, beam divergence and
diameter, receiver focus and hole size. Flat targets
such as the sea bed can be scanned in one frame by
tilting the field of view. Panoramic views up to
360 0 are possible using vertical scanner separation.

Image dissectors are being developed for systems
of this kind, but mechanical systems are somewhat

Line scan geometrical filter

If the vessel carrying a geometrical system is travel­
ling at an adequate speed then frame scanning is not
needed. It would then resemble the line scan tech­
nique of high resolution radar mapping and is suited
to 'search' operations.

Synchronous scanning

In air a scanning transmitter and receiver can be
operated at high enough speeds for the transit time
of the light to be important. The system can then
behave as a c.w. range gate. It is feasible to build
a system with about 15m discrimination in water but
this is not adequate in most circumstances.

In this way the scattered background may be reduced
and, hence, at short ranges and moderate resolution
even small separations can give small range depths.
This may itself be a problem. Great flexibility in
method of use and display is also possible. It is
probable that the scattering discrimination will be
much better than with pulsed gating. Light used to
illuminate early parts of the picture has a very long
time in which to diffuse out of the region viewed and
will be heavily attenuated. The method also elimin­
ates some forward scattering of light from the target.

Geometrical filtering

By combining the laser television with a scanning a
receiver the reception cone can be reduced (Fig. 4).
Image-dissector tubes provide this capability but
mechanical systems are also possible. Effectively
a small hole scans the image in synchronism with
the laser illumination. Only light which is scattered
more than once can enter the field of view of the
receiver.

Laser scanning television

If a collimated laser beam is scanned across the
target point by point then all the scattered light re­
turned to a photomultiplier receiver can be used to
produce a television image synchronized to the trans­
mitter raster.

To prevent the scattered light saturating the system
the scanning beam should be offset from the detector
as much as possible. However, this is not adequate
unless the receiver reception cone and the maximum
operating range are rather limited.

total range (half a visibility-length) the signal level
for the nearest is ten times that of the farthest pos­
sible target. In addition, variations due to the tri­
angular or trapezoidal form of the range-gate effici­
ency could lead to a further factor of three or four.

Thus it is essential that any receiving camera has
not only a system range over six orders of magni­
tude, but within a particular range-gate, the dynamic
range of the system needs to be at least 40 before
taking into account variation of the reflectivity of the
target. Thus a workable system has been dependent
upon the development of an electronic 'gateable'
camera tube with this kind of dynamic and system
range, and preferably with television readout. The
recent development of a satisfactory tube (Isocon)
has given fresh impetus to research into this tech­
nique at AWRE.

The Isocon is very sensitive (about 10 x photon noise
limit) and has been operated with an image inten­
sifier. It has a dynamic range of 600 which with
a.g.c. can be raised to 10000 without serious bloom­
ing and overload.

Because the tube is like an image orthicon, it should
be possible to gate it in times as short as 4ns (cor­
responding to 1. 8m range depth).
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RANGING

Circular polarization

For a target illuminated with circularly polarized
light the component returned from the target is often
depolarized, While that from single scattering at
particles is of the opposite sense of circular polari­
zation. The receiver uses a circular polarizer to
discriminate the single and odd-multiple scatter.

The advantage of a laser in this case rests mainly
with the power available at the right wavelength;
initial polarization gains a factor of two or three in
intensity.

easier to build because of the difficulties of align­
ment and the electron beam and deflection distortion
found in image dissectors.

By applying known techniques to overcome these
problems, image dissectors become inherently more
flexible. The remaining difficulties are caused by the
need for a.g.c., and sophistication of display systems
to utilize information from different ranges.

It has recently been suggested that, where scattering
exceeds the direct attenuation by an appreciable
amount, scatter arriving at a target exceeds the
monopath radiation beyond a few attenuation lengths.
Thus, using a scanning discrimination system may
exclude useful light from illuminating the target.
A trade-off is possible in the resolution capabilities
at large ranges.

Excluding the circular polarization and the laser
television system, all the systems described above
can give range information.

The pulsed range-gated system could have a preci­
sion better than O. 3m while the geometrical filtering
could be better than 3cm over practical ranges. The
range of the detected volume is a function of the
position in the field of view. For the pulsed range­
gated system the detected volume lies between two
ellipsoids (spheres, if transmitter and receiver are
coaxial) see Fig.5a.

For the geometrical filtering system the volume lies
between two toroidal surfaces (the toroid has no
central hole!). Fig.5b. Along the scan line the

range can vary rapidly depending on the separation
between laser and detector but in the panoramic ver­
sion it is constant.

Laser rangefinders

Pulsed laser rangefinders have been developed for
battlefield use and also for cloud tracking. In prin­
ciple the techniques, which determine the time of
return of a pulse superimposed on a smooth exponen­
tial return from the scattering medium, are directly
applicable. Underwater use requires frequency-
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doubled Nd YAG lasers and high clock rates to
achieve improved range accuracy.

Both pulsed and swept-frequency laser altimeters
have been made for airborne use. These are directly
analogous with radio and radar devices and could,
therefore, use pulse-code modulation, chirp and
pseudo-random noise-coding to improve the ranging
precision. In the swept-frequency case the coherent
return from the sea bed would permit operation in
strong scattering conditions without recourse to
range-gating or geometrical filtering. Using this
kind of technique in low-flying aircraft, depth, in
shallow-water conditions, can be measured by sub­
tracting the surface returns from the sea-bed
returns.

Optical techniques developed for surveying and
geodesy are also likely to be applied. Cooperative
targets, mounting a retroreflector, can be measured
in range using multiple-frequency modulation at
microwave frequencies or single-frequency modula­
tion if changes in range are measured continuously.

Navigation

If two fixed and recognisable reference points are
available with known separation, then any ranging
system such as those mentioned above can be used
for relative navigation by trilateration. If the separa­
tion of the points is not known then measurement of
the two ranges and the angle between the direction
of the two references will suffice. Mounting a laser
system in place of a theodilite will therefore allow
precise navigational measurements in slow-moving
craft. Reference marks would preferably not be
natural features of the underwater terrain but retro­
reflectors. This would improve the range capability
because of the high reflectivity and directional re­
turn. Systems are being developed for accurate
above-water navigation near the coast where radio­
fix methods are sometimes prone to error.

Navigational coordinate systems are also possible
using modifications of the geometrical filtering
system. Since the receiver can give the scan line
and scan angle at which the target lies, range accu­
racy is dependent on the base-line length, the trans­
mitter and receiver beam-widths and the scanning
uniformity. This would facilitate tracking and homing
on mother ships and, in particular, search operations
could be better organised.

Laser beams are used to define fixed lines along
which vessels can move. These are already applied
in dredging operations and might be used both above
and below water for defining a line of search. Exist­
ing beam-riding detectors, such as quadrant photo­
multipliers, are suitable. Forward scatter is again
the factor limiting the range, probably to about
twenty attenuation lengths.

COMMUNICATIONS

Although it has been suggested that forward scatter
can increase the range of laser systems used for
communications, for oceanology it seems unnecessary
to use lasers unless they are already present in
another role. Acoustic systems can transmit data
over long distances, unless the required data rate
is high or secrecy is necessary. It is difficult to
imagine a high data rate not involving a viewing de­
vice and it would need to be free-roving and remote
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from the recording centre in order to require a
transmission link. However, for communicating video
data it should be feaSible to obtain something like
two and a half times the range of a viewing system
or about 25 attenuation lengths.

PARTICLE COUNTING & SIZE ESTIMATION

Lasers can be focused to a diffraction-limited spot.
By observing this brightly illuminated volume from
the side, individual particles may be counted by the
flash of light they produce on passing through. If
the particles are small then the direction in which
the light is scattered is fairly well defined according
to size. Hence, their size classification is possible.
Large particles passing through this volume can be
given a well-defined velocity so the time for which
light is scattered will give some measure of the
size. Normal nuclear instrument counting techniques
can be applied. The method has been used for count­
ing yeast cells in fluid flows and design studies have
been made for a continuous plankton counter.

VELOCITY MEASUREMENT

Laser Doppler systems have been developed capable
of measuring velocities over a wide range and with
weak signal returns. Thus, it is possible to obtain
satisfactory Doppler velocity measurement of sus­
pended particles in water in concentrations as low
as one part in two million. Sea water in general has
much higher particle concentrations and it is there­
fore possible to measure local water-flow velocities.
The laser Doppler devices do not have to use the
line of transmitted light for the return scattered
Doppler shifted light and they may be focused, thus
isolating very small sample volumes.

The local flow around ships in motion could be
measured to give hydrodynamic data on boundary
flow. With more remote isolated volumes currents
and drift rate could be measured and local flow pat­
terns in waves determined.

These systems exist in engineered forms. Since
many applications would be shipborne and not require
depth proofing, it is surprising that they do not seem
to have been applied.

HOLOGRAPHY

A holographic recording is capable of being replayed
in such a way that the original wavefront can be ob­
tained again at any subsequent time and hence it is
possible to use this wavefront as if it were in its
original position but without the water! It is possible
to see objects in three dimensions, to focus on them,
to use a microscope to view them (if they have been
recorded with sufficient aperture and angle of view),
and to process the wavefronts in any way that might
give useful information in the original setting.

The advent of pulsed solid -state lasers capable of
front-illuminated holographic recording will permit
particle velocities up to at least 3Om/s. Three­
dimensional recordings of plankton can be obtained
and from these it would be possible not only to count
the plankton individually, but to obtain their VOlume



distribution and identify them. By double pulsing
the recording laser it would be possible to obtain
drift, settling rate and velocity distribution of mobile
plankton.

A difficulty which has been underestimated, is the
unusual appearance of coherently illuminated objects,
particularly at high magnification.

The techniques of holography are also applicable to
the performance analysis of vibrating objects. In
particular the Powell and Stetson technique has been
used to investigate the uniformity in response of
large area sonar transmitting transducers.

OPTICAL INFORMATION PROCESSING

A normal image of an object is not necessarily the
most convenient form for subsequent analysis. The
diffractometer has been used in a wide variety of
ways for reprocessing information into a suitable
form for subsequent measurement. The simple use
of the diffraction pattern of small particles can give
approximate information on particle-size distribution
and number. The combination of diffractometers
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